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ABSTRACT 
 

My work has been focused on compliant mechanisms, origami engineering, and rapid 

prototyping. Two of the projects that I worked on were focused on compliant mechanisms and 

origami engineering. The similar goal of both of those projects was to create an origami membrane 

whose kinematics mimic that of an existing mechanism. The first project created an origami 

membrane to mimic the kinematics of a planar shape-changing mechanism. This mechanism was 

a square shaped unit-cell which could shear, compress, and expand in its own plane. In addition to 

waterproofing the mechanism, the first project also sought to optimize the dimensions of the 

mechanism in order to reduce internal stresses during actuation. The results of the optimization 

portion of this project were a reduction of internal stresses by more than 22%. The results of the 

origami synthesis portion of the project was the creation of a membrane with an origami pattern 

whose kinematics mimic that of the shape-shifting surface. The origami membrane is capable of 

being folded into each of the various positions that the shape-shifting surface is able to fold into. 

The second project sought to create a similar type of origami fold pattern, but for a Shape Morphing 

Space Frame (SMSF). This project created an origami membrane designed to mimic the 

kinematics of a mechanism that had been developed in a different previous project. The mechanism 

consisted of a series of Linear Bistable Elements (LBEs) which were assembled to form a cylinder. 

When the LBEs were actuated the cylinder would deform to a hyperboloid. This project created 

an origami membrane whose kinematics mimic that of the shape-morphing space frame and was 

able to change side length by more than 30%. The origami membrane was able to fold to each of 

the SMSF’s states. This project also developed a method for synthesizing an origami fold pattern 
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with shape-morphing triangles. Both of the first two projects that comprise this dissertation sought 

to develop an origami fold pattern whose kinematics mimic that of an existing mechanism. In each 

of these projects one of the future goals for the project was to create a prototype where the 

mechanism and the origami are fabricated together as one integrated prototype. Possible methods 

of accomplishing this goal include rapid prototyping. Thus, the mechanics of rapid prototyping are 

of concern for future work on these projects. The third project developed a part which could be 

printed from a Fused Deposition Modeling (FDM) machine to test certain material properties 

(yield strength and elastic modulus) after it had been processed through the FDM. This would 

allow the material properties to be tested without the use of expensive test equipment. This project 

developed eight parts which could be used to bracket certain material properties of rapid 

prototyped parts after processing. The parts developed in this project were capable of bracketing 

the material properties of the materials in question, and were able to do so when tested across 

multiple FDM machines. The results of this work were stress-strain data which indicates the 

behavior of the part under load, and a method for inexpensively testing the material properties of 

rapid prototyped parts after processing. 
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CHAPTER 1: OVERVIEW 
 

The common area of all of my research at USF has been the field of compliant mechanisms, 

“a compliant mechanism is one which gets some or all of its motion from deflection of flexible 

members” [1]. Some examples of compliant mechanisms include nail clippers, diving boards, and 

certain plastic bottle tops (such as shampoo bottles). My research has largely focused on shape-

changing mechanisms, which use compliant mechanisms to change their shapes. I have taken 

certain shape-changing mechanisms and added waterproofing barriers to them in order to make 

them waterproof. A substantial part of my research has involved joining compliant mechanisms 

with novel origami membranes, to accomplish this goal. 

One of the primary themes of my research has been developing solutions that involve the 

use of origami, in order to make a mechanism waterproof [2], [3]. The mechanisms in question are 

shape-changing mechanisms, which can morph from an initial state, with a specific initial 

geometry (i.e. square or cylindrical) to a deformed state (i.e. a different parallelogram or 

hyperbolic). Origami engineering is a burgeoning field of engineering that shows promise in a 

multitude of fields. One of the reasons that origami is becoming more common in engineering is 

because it offers the ability to have a high ratio of deployed volume to stowed volume. This entails 

that a device can be small while stowed, and substantially larger when it is deployed. This idea is 

particularly useful in applications where efficient use of volume is critical (i.e. the aerospace 

industry). Although origami has been developed for centuries, its use in engineering applications 

has been more heavily studied in recent years [4]-[8]. 
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Part of the development of origami for engineering applications has involved research on 

the theory and physics that govern it. There has been research pertaining to the rules for origami 

synthesis that must be followed in order for a fold pattern to be feasible [9]-[11], as well as projects 

which describe the mobility of various origami designs [12]. In addition to the work described in 

this dissertation, there has been other work that combines the fields of origami and compliant 

mechanisms [13], [14]. Several projects have studied the use of computational methods for 

developing algorithms to generate origami solutions [11], [15]-[18]. There have also been projects 

which served to develop actuation methods for origami [19]-[23], as well as sensing methods [24]. 

Paper is a good material for use in prototyping origami but in applications, other materials are 

often required. For this reason there has been research into ways of producing certain fold types in 

materials that do not yield the way paper does when folded [25], [26]. There have also been 

projects that perform Finite Element Analysis (FEA) on origami [23], [27]. In addition there has 

been extensive research devoted to developing solutions for origami to be used in specific 

applications. Origami has been used to optimize raised floor structures [28]. It has also been used 

by the U.S. military for portable shelters [29], and to make lithium-ion batteries [30]. It has been 

considered for car bumpers for its potential to absorb energy [31], [32], as well as in robotics and 

electronics applications [33], [34]. 

The development of origami analysis methods involves creating novel models for 

describing the behavior of origami. It is often helpful to model origami as rigid mechanisms using 

mechanism theory [35], [36]. It is also beneficial to understand graph theory for the purpose of 

modeling the behavior and structure of origami [37]-[41]. 

There has been past research pertaining to shape-changing mechanisms [42]-[46], as well 

as topology optimization and synthesis [20], [46]-[49]. There has also been previous research on 
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waterproofing and the various methods for accomplishing it, such as the use of labyrinth seals 

[50]-[56], and also other seals [57], [58]. Other projects have sought to optimize various properties 

of compliant mechanisms one example of which is weight [59]-[60].  

Chapter 4 of my dissertation is based on the development of a simplified method for testing 

the properties of materials that have been processed through a rapid prototyper. One of the most 

popular rapid prototyping methods is Fused Deposition Modeling (FDM). This method involves 

heating the feed-stock material to a high temperature so that it becomes soft enough to extrude. 

After which it is cooled back to room temperature and it hardens. Given the thermal cycling 

involved in this process, and the change in geometry from a reasonably homogenous block of 

material to a matrix of stacked, extruded material, the material properties of the feed stock can 

change in unpredictable ways. Thus, testing FDM parts after processing can be an important part 

of the design process. One common method of testing material properties involves the use of test 

equipment, some of which can be large and expensive.  Thus,  developing a simplified and 

inexpensive method for testing material properties after proccessing would be particularly 

beneficial to home users.  

Other research has similarly develped alternative test methods for testing mechanical 

properties of materials [61]. There has also been previous research into the mechanical properties 

of additive manufactured parts [62], [63]. As well as other research into improving the 

microstructure of additive manufactured parts [64]. One aspect of this project was controlling the 

effects of stress concentrations at the base of a cantilever beam, other projects have similarly 

considered these types of effects [65]. 

In Chapter 2 of the dissertation I discuss a project in which a shape-shifting surface was 

made waterproof by adding a flexible origami membrane whose kinematics mimic that of the 
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underlying mechanism. The mechanism in this project was a square shaped, planar mechanism 

which could compress to a smaller square, expand to a larger square, and shear to a rhombus-like 

shape. In Chapter 3 I discuss a similar project, which took a shape-morphing space frame and made 

it waterproof, also by adding a flexible origami membrane whose kinematics mimic that of the 

underlying mechanism. In this project the mechanism was initially a cylinder, which when 

deformed, became a hyperboloid. In Chapter 4 I discuss a project which sought to develop a rapid, 

inexpensive test method for testing parts that were made by rapid prototyping. In this project the 

goal was to develop a test method that did not require the use of expensive test equipment.  
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CHAPTER 2: DESIGN AND KINEMATIC OPTIMIZATION OF A WATERPROOF  
 

SHAPE-SHIFTING SURFACE (SSS) 
 

Portions of Chapter 2 were previously published in Proceedings of the ASME International 

Design Engineering Technical Conference & Computers and Information in Engineering 

Conference in 2015 and has been reproduced with permission from ASME. I (Andrew Katz) was 

the first author, and my advisor Dr. Craig Lusk was the second author [2].  

 

2.1 Introduction 

The objective of this Chapter is to design and optimize a waterproof shape-shifting surface. 

A shape-shifting surface [66] is a surface which maintains its effectiveness as a physical barrier 

while changing its shape. One way of achieving this is using arrays of multilayered unit cells. The 

unit cell (Figure 1 shows its equilibrium position), used in this Chapter, is a square which can 

compress to two-thirds of its original size, expand in tension to four-thirds of its original size, or 

shear +/- 30 degrees at each corner while maintaining integrity. Compression or expansion can 

occur in the X and/or Y direction(s). Previous designs acted as “line-of-sight” barriers but had gaps 

which would allow for fluid flow between layers [66].  

A waterproof shape-shifting surface's benefit would lie in its ability to preserve structural 

integrity in the surface’s normal direction and allow shape changing in the surface. This stiffness 

anisotropy (flexible in-plane, stiff normal to the plane) is provided by the SSS’s novel geometry 

and is in contrast to the typical behavior of isotropic homogeneous surfaces, which are typically 

 
Copyright by ASME, Andrew J. Katz; Craig P. Lusk, Paper Number DETC2015-47595 
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much stiffer in-plane. Our goal was to combine the structural integrity of a shape-shifting surface 

with the water-tight seal of a flexible plastic sheet to create a surface which would be strong, 

flexible, and waterproof.  

A waterproof shape-shifting surface could have applications in the maritime and medical 

industries. In the maritime industry the device could serve to prevent spilled fluid, such as oil from 

spreading further into a body of water. In the medical industry it could act as a sterile barrier either 

to protect caregivers from a quarantined patient, or to protect immuno-compromised patients from 

infection. In these applications, such surfaces may have advantages of allowing greater ranges of 

motion or greater energy absorption capability (stored elastic potential in compliant members) than 

existing surfaces, which could be important in dealing with fluids under pressure.  

The first goal of the current project was to make the unit cell waterproof i.e. an effective 

barrier to fluid flow normal to the surface. The second goal was to optimize the geometry of the 

compliant link to minimize internal stresses when unit cells deforms. The device was made 

waterproof by adding a thin flexible membrane between the layers. The membrane was designed 

to have an origami fold pattern which would allow it to have the same kinematics as the device. 

The structural integrity was improved by creating an optimization routine which minimized 

internal stress when the device is actuated.  
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2.1.1 Background 

(A) (B) (C) (D) 
 
Figure 1 The unit cell in its equilibrium position (A), expanded position (B), 
compressed position (C), and its sheared position (D)  
 

 

The compliant links are the individual pieces which makeup the device, an example is 

shown in Figure 2, which is labeled to show its various components and the coordinate system 

orientation. The out-of-the-page direction is aligned with the Z-axis. The axis-orientation is the 

same for all figures. When two unit cells are adjacent to one another, the part shown in Figure 2 

would be adjacent to a similar part with a mirrored orientation. When two parts meet like that, they 

can be individual, they can be hinged (or connected), or they can be fused (as shown in Figure 3). 

When the parts are fused, compression and tension in the flexure occurs if the path of the node is 

 

 

 
Figure 2 Labeled example of our initial 
link design 

 
Figure 3 Example of the double-size 
initial part 
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not a straight line in the X-direction. Thus, the kinematics of the moving node are a significant 

determiner of the maximum stresses seen as the flexure deflects. 

The initial design of the SSS is described in [66]. A pseudo-rigid-body model (PRBM) [1] 

was used to represent the SSS link as a system of rigid links connected by torsional springs. Solid 

mechanics theory was used to analyze the behavior of the part using the virtual work method. 

Together these theories form the basis for the optimization component of the project, which aimed 

to reduce the stress in the flexure by improving its kinematics (i.e. making its motion more nearly 

straight-line in the X-direction).  

The PRBM is a way of modeling a compliant mechanism with a good degree of accuracy 

when large deflections are going to occur. When a device is going to undergo small deflections, 

the small angle approximation can be used, where sin (𝜃𝜃)  ≅  𝜃𝜃. When the deflection is large 

enough that this approximation is no longer a reasonable assumption, a different method is 

required. The method used in this project was the PRBM, where compliant segments are modeled 

as two rigid members connected by a torsional spring.  

The principle of virtual work involves using a virtual deflection of a member to measure 

the amount of work done in order to make a member deflect. This allows us to calculate the change 

in potential energy of a series of springs (such as the ones used in the PRBM).  

Previous papers have analyzed methods for synthesizing origami patterns for various 

purposes [67], [68]. Other papers focused on design of origami fold patterns based on a series of 

constraints. While some origami papers have focused on optimization [68], [69], and some on 

minimizing out-of-plane thickness [70], and other papers that were useful to this project simply 

focused on a variety of considerations when engineering origami such as crease characterization 
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[71]. Another paper that discussed optimization of compliant mechanisms was [72], which also 

used two nested routines to optimize a compliant mechanism. 

2.1.2 Overview 

Chapter 2 focuses on the design of the SSS and the origami membrane that makes it 

waterproof. It first discusses the optimization of the compliant link of the surface and the modeling 

that allowed the link to be optimized. Section 3 discusses the origami membrane and how it was 

designed so that its kinematics mimic the kinematics of the SSS unit cell. Section 4 has the 

conclusions and reviews the contributions of the Chapter and the plans for future work. 

 

2.2 Kinematic Optimization 

When the unit cell is compressed or expanded, the node attached to the compliant arm tends 

to move in an arc-shaped path. This indicates that in the double-size version, when the arm is 

forced to move in a straight line, there will be internal stresses in the compliant arm associated 

with it moving on a different path. Optimizing the kinematics of the compliant link, making its 

motion tend to a straight-line, minimizes these internal stresses, thus making a more efficient 

design. The optimization was based on the initial model shown in Figure 4. 

To begin the optimization, a PRBM of the compliant link was constructed, and a vector 

loop was drawn [1], as shown in Figure 4. The dotted circles at the tips of vectors 𝑟𝑟1���⃑ , 𝑟𝑟2���⃑ , 𝑟𝑟3���⃑ , and 𝑟𝑟4���⃑  

indicate the positions of the torsional springs in the PRBM. 
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Figure 4 Vector loop of the pseudo-rigid-body model of the compliant link 

 

The vector loop equation in the X-direction is: 

𝑟𝑟1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃10 + 𝑟𝑟2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃20 + r3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃30 + 𝑟𝑟4𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃40 + 𝑟𝑟5𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃50 = 1 (1) 

and the vector loop equation in the Y-direction is: 

𝑟𝑟1𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃10 + 𝑟𝑟2𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃20 + 𝑟𝑟3𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃30 + 𝑟𝑟4𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃40 + 𝑟𝑟5𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃50 = 0 (2) 

where 𝑟𝑟1−5 are the lengths of each link of the vectors, and the thetas are the initial angles of the 

members, measured counter-clockwise positive from the X-axis, at the tail of the respective 

vectors. The optimization variables are the position coordinates x1, x2, x3, y1, y2, y3, and y4. The 

coordinates are the tips of their respective vectors. The virtual work is then calculated using the 

equation: 

�⃑�𝐹𝑦𝑦 ∙ 𝛿𝛿𝑧𝑧2 + �⃑�𝐹𝑥𝑥 ∙ 𝛿𝛿𝑧𝑧1 − Σ
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿𝑖𝑖

𝛿𝛿𝛿𝛿𝑖𝑖 = 0 
(3) 

where �⃑�𝐹𝑥𝑥 is the applied force which contributes to expansion or compression of the unit cell, and 

�⃑�𝐹𝑦𝑦 is the internal force that causes tension or compression in the double-size version. The 𝑑𝑑𝑧𝑧 

vectors are displacement vectors, V is potential energy from springs, and the q variables are the 

generalized position coordinates.  
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𝛿𝛿1 = 𝑟𝑟6 (4) 

𝛿𝛿2 = 𝑟𝑟5 (5) 

𝛿𝛿3 = 𝜃𝜃2 (6) 

𝑧𝑧1���⃑ = 𝑟𝑟6 (7) 

𝑧𝑧2���⃑ = 𝑟𝑟6 + 𝑠𝑠𝑟𝑟5 (8) 

𝛿𝛿𝑧𝑧1���⃑ = 𝛿𝛿𝑟𝑟6 (9) 

𝛿𝛿𝑧𝑧2���⃑ = 𝛿𝛿𝑟𝑟6 + 𝑠𝑠𝛿𝛿𝑟𝑟5 (10) 

Vector 𝑟𝑟6 remains horizontal, and fixed at the tail. The compliance of the members is modeled by 

the aforementioned torsional springs located at the tips of 𝑟𝑟1���⃑ , 𝑟𝑟2���⃑ , 𝑟𝑟3���⃑ , and 𝑟𝑟4���⃑ . The equation for the 

potential energy in all of the torsional springs is then: 

𝛿𝛿 =
1
2
𝐾𝐾2Ψ22 +

1
2
𝐾𝐾3Ψ32 +

1
2
𝐾𝐾4Ψ42 +

1
2
𝐾𝐾5Ψ52 

(11) 

 

where the K variables are the spring constants of the torsional springs, and 

Ψ2 = (𝜃𝜃2 − 𝜃𝜃20) − (𝜃𝜃1 − 𝜃𝜃10) (12) 

Ψ3 = (𝜃𝜃3 − 𝜃𝜃30) − (𝜃𝜃2 − 𝜃𝜃20) (13) 

Ψ4 = (𝜃𝜃4 − 𝜃𝜃40) − (𝜃𝜃3 − 𝜃𝜃30) (14) 

Ψ5 = (𝜃𝜃5 − 𝜃𝜃50) − (𝜃𝜃4 − 𝜃𝜃40). (15) 

To solve equation (3), it is first written using each of the three q variables. Equation (11) is then 

differentiated with respect to each of the three q variables so that it can be plugged into equation 

(3). The results are: 

𝐹𝐹𝑥𝑥 =
𝑑𝑑𝛿𝛿
𝑑𝑑𝑟𝑟6

 
(16) 
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𝐹𝐹𝑦𝑦 =
𝑑𝑑𝛿𝛿
𝑑𝑑𝑟𝑟5

 
(17) 

𝑑𝑑𝛿𝛿
𝑑𝑑𝜃𝜃2

= 0 
(18) 

𝑑𝑑𝛿𝛿
𝑑𝑑𝑟𝑟6

= 𝑘𝑘3Ψ3
𝑑𝑑Ψ3
𝑑𝑑𝑟𝑟6

+ 𝑘𝑘4Ψ4
𝑑𝑑Ψ4
𝑑𝑑𝑟𝑟6

+ 𝑘𝑘5Ψ5
𝑑𝑑Ψ5
𝑑𝑑𝑟𝑟6

. 
(19) 

To solve equations (16) – (19), kinematic equations are used to find expressions for 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟6����⃑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟5

, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃2

. We use equations (1) and (2) in complex form: 

�⃑�𝑥 = 𝑟𝑟1𝑒𝑒𝑖𝑖𝜃𝜃10 + 𝑟𝑟2𝑒𝑒𝑖𝑖𝜃𝜃2 + 𝑟𝑟3𝑒𝑒𝑖𝑖𝜃𝜃3 + 𝑟𝑟4𝑒𝑒𝑖𝑖𝜃𝜃4 + 𝑟𝑟5𝑒𝑒𝑖𝑖𝜃𝜃5 (20) 

Equation (20) is then differentiated with respect to 𝑟𝑟6 and rearranged to yield: 

𝑑𝑑𝜃𝜃4
𝑑𝑑𝑟𝑟6

=
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃3

𝑟𝑟4sin (𝜃𝜃4 − 𝜃𝜃3)
. 

(21) 

The same process can then be applied to solve for 𝑑𝑑𝜃𝜃3
𝑑𝑑𝑟𝑟6

. Once those coefficients have been obtained, 

the final equation for this part of the calculations is produced: 

𝐹𝐹𝑥𝑥 =
1

sin (𝜃𝜃3 − 𝜃𝜃4)
�
−𝑘𝑘3Ψ3𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃4 

𝑟𝑟3
+
𝑘𝑘4Ψ4𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃3

𝑟𝑟4
+
𝑘𝑘4Ψ4𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃4 

𝑟𝑟3
+
𝑘𝑘5Ψ5𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃3

𝑟𝑟4
�. 

(22) 

The same process is then used to solve for Fy and 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃2

. Once these equations have been solved they 

become the basis for the optimization program. 

𝐹𝐹𝑦𝑦 =
1

sin (𝜃𝜃3 − 𝜃𝜃4)
�
𝑘𝑘3Ψ3
𝑟𝑟3

cos(𝜃𝜃5 − 𝜃𝜃4) − 𝑘𝑘4Ψ4 �
cos(𝜃𝜃5 − 𝜃𝜃3)

𝑟𝑟4
+

cos(𝜃𝜃5 − 𝜃𝜃4)
𝑟𝑟3

�

−
𝑘𝑘5Ψ5
𝑟𝑟4

cos (𝜃𝜃5 − 𝜃𝜃3)� 

(23) 
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𝑑𝑑𝛿𝛿
𝑑𝑑𝜃𝜃2

= 𝑘𝑘2Ψ2 + 𝑘𝑘3Ψ3 �
−𝑟𝑟2sin (𝜃𝜃2 − 𝜃𝜃4)
𝑟𝑟3sin (𝜃𝜃3 − 𝜃𝜃4)

− 1� + �
−𝑘𝑘4Ψ4𝑟𝑟2sin (𝜃𝜃2 − 𝜃𝜃3)

𝑟𝑟4sin (𝜃𝜃4 − 𝜃𝜃3)
�

+ �
𝑘𝑘4Ψ4𝑟𝑟2sin (𝜃𝜃2 − 𝜃𝜃4)
𝑟𝑟3sin (𝜃𝜃3 − 𝜃𝜃4)

� + �
−𝑘𝑘5Ψ5𝑟𝑟2sin (𝜃𝜃2 − 𝜃𝜃3)

𝑟𝑟4sin (𝜃𝜃4 − 𝜃𝜃3)
� = 0 

(24) 

An optimization program was written in MATLAB® and works in two phases. In the first 

phase, it solves for five unknown variables using five equations. The five equations are equations 

1, 2, and 22 - 24. The five unknown variables are Fx, Fy, θ2, θ3, and θ4. Our routine solves the 

equations using the fsolve command, a gradient-based optimization which searches for the root(s) 

of a system of equations. The initial guess values were based on an existing prototype of the 

compliant link. The unknowns are found for the feasible range of input values of 𝑟𝑟6. The most 

important output of the first phase of the program is the maximum force experienced in the Y-

direction (our internal stress metric). 

The second phase of the optimization uses the fmincon command (a gradient-based 

optimization routine) to minimizing the maximum force experienced by the compliant arm in the 

Y-direction. In this phase, the program repositions the coordinates that form the members of the 

pseudo-rigid-body model, then re-determines the maximum force in the Y-direction. It repeats this 

process, searching for coordinate values which minimize the force in the Y-direction. The stopping 

criteria for the function value is 10-6 (i.e. practically zero). The constraints of the program are:  

1. The beginning and end of the vector loop cannot change position. So the tail of 𝑟𝑟1���⃑  and the 

tip of 𝑟𝑟5���⃑  do not change position, and 𝑟𝑟6���⃑  remains horizontal.  

2. Vector 𝑟𝑟5���⃑  must remain vertical. This is based on the symmetry of the double-size model. 

In order to ensure that the solution which the program found was the best solution, several 

forms of the optimization were run. First, a gradient-based routine (fmincon) with initial values 
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taken from an existing prototype was used, then MultiStart (MS) and GlobalSearch (GS) 

optimizations were also run, which also use the fmincon routine, but have different methods for 

generating initial values. The fmincon optimization uses a prescribed set of initial values to plug 

into the objective function. The MultiStart routine generates a defined number of sets of initial 

values randomly, then runs each of them, searching for the optima, the MultiStart used in this 

program used twenty sets of initial values. The GlobalSearch (GS) routine starts with a prescribed 

set of initial values, then generates additional sets of initial values using a scoring system to 

determine which initial values are most likely to give optimal results [73]. The GlobalSearch 

routine found the solution which was determined to be the best. This determination was based on 

the objective function value. The coordinates which the program determined were optimal, formed 

the basis for the new designs of the compliant link. 

 

2.2.1 Optimization Results 

Table 1 Optimized vectors 
 

 

The output of the optimization program was a set of coordinates that form a vector loop. 

The coordinates have been converted to vector form and are shown in Table 1. In Table 1 and 
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Table 2 GSO indicates the GlobalSearch Optimized compliant link, and SIO indicates the Simple 

Optimized compliant link. The loop must then be interpreted to form a three-dimensional part. One 

limitation of our process was that the interpretation of the vector loop as a compliant mechanism 

is under determined and a variety of compliant links might be equivalent the PRBM. Thus, this 

kinematic optimization is not as definitive as perhaps some forms of topology optimization might 

be. The optimized version of the compliant link is shown in Figure 5. Comparing Figures 4 and 5 

shows that the optimization program determined that changing the geometry of the flexure of the 

compliant link would reduce the internal stresses during operation. 

 

 
Figure 5 Drawing of the optimized compliant link 

 

Finite Element Analysis (FEA) performed using SolidWorks® showed a 22.91% reduction 

in the maximum Von Mises stress experienced by the compliant link during operation as shown in 

Table 2. This analysis used polypropylene copolymer as the material. All FEA results are based 

on the double-size model because the double-size model was expected to experience higher 

stresses. 
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Table 2 Results from FEA and optimization 
 

 

 

2.3 Origami Design 

For this project the chosen method of making the unit cell waterproof was adding a piece 

of flexible material or ‘membrane’ with an origami fold pattern between the layers of the unit cell. 

This piece of material is henceforth referred to as ‘the membrane’. For initial prototyping, the 

membrane was made out of standard printer paper. The fold pattern was designed so that its 

kinematics would match the kinematics of the unit cell. A simplified model of the shields (shown 

in Figure 6) was used for the origami design, where each triangle represents one shield. It is 

simplified because this model of the shields does not include the flexure portion of the links (shown 

in Figure 2). In this model, each shield exists on a different level in the Z-axis, where the Z-axis is 

into/out of the page. The design of the fold pattern was divided into three parts: edges, which allow 

for compression and expansion of the unit cell; corners, which allow shearing of the unit cell, and 

a center piece which provides a contiguous (and hence waterproof) surface and allows center 

motion. 
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Figure 6 Simplified model of the unit cell, with the nodes numbered and certain shields 
designated with letters 

 
 

Figure 7 Diagram of relative translation between two shields sharing a side, which 
provides for compression/expansion of the unit cell. 

 

As shown in Figure 7, two adjacent shields on a side may be either pulled apart in tension, 

or pushed together in compression. Thus the origami membrane that connects the two shields on 

a side must fold in a way that permits this relative translation. Rotational motion (shown in Figure 

8) at the corners of the unit cell permits it to shear. The rotations that occur during shear are of 

course coupled. For example, if the angle at nodes 2 and 4 become more acute, then the angles at 

nodes 1 and 3 become more obtuse, and the part of the origami membrane at each of the corners 

would need to fold in ways that permit both acute and obtuse angles at each corner.. Based on the 
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constraints of the unit cell it was determined that two shields at a node would need to be able to 

rotate up to thirty degrees (positive and negative) with respect to one another.  

 

 
Figure 8 Diagram of the rotational motion of two shields 

 

 

 
Figure 9 Schematic of the edge piece of the origami membrane 

 

As previously stated, the unit cell was designed to expand to four-thirds of its original side 

length, and compress to two-thirds of its original side length, where the original side length was 

three inches. For this reason, the portion of the origami membrane that connects two adjacent 

shields needed to be one inch. Given that shields that are connected at a node need to be able to 

rotate up to thirty degrees (positive or negative) with respect to one another, the portion of the 

membrane that connects these shields (which originates along the hypotenuses of the triangles) 

needed to be thirty degrees wide. The design for the portion of the origami membrane that allows 

compression/expansion (shown in Figure 7) is the same on each edge of the unit cell.  
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In Figure 9, the triangles are the same adjacent shields shown in Figure 7. A membrane 

(labeled ‘B’) connects the two shields and fills the gap as the shields move relative to one another. 

 

 
Figure 10 Schematic of the corner pieces of the origami membrane 

 

Figure 10 shows the origami sections that connect the corner pieces. The right triangles on 

the left and right (sections C and E) are the shields which are the same as the respective ones shown 

in Figure 8. Node 3 is also the same as in Figure 8. Section D in Figure 10 is analogous to section 

B in Figure 9, in that it is the membrane section which fills the gaps between shields as the corners 

shear. 

The edge and corner pieces of the origami connect to one another in series going around 

the outside perimeter of the unit cell. These pieces seal the gaps between the shields and prevent 

fluid from flowing between them. Since these pieces are wrapped around the outer edges and 

corners of the unit cell, they leave a gap in the middle of the unit cell, where fluid would be able 

to flow. The edge and corner parts of the origami design were relatively simple because they are 

each only concerned with the relative motion of two shields. When four sections such as the one 

shown in Figure 9 are arranged in a square to form part of the origami membrane the drawing 
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shown in Figure 12 is generated. In Figure 12, the shield sections (like those labeled C and E in 

Figure 10) are colored black, while the membrane is left white. Four additional triangles (labeled 

I, II, III, and IV) are added to each corner of the membrane in order to have a geometry that is 

planar, i.e. capable of being cut from a flat sheet of material. In use, section I would be permanently 

bonded to II, and III to IV, resulting in a corner that looks like Figure 10, with the additional 

material included (sections I, II, III and IV) becoming flaps folded under the membrane.  This 

forces the originally planar piece of origami to fold out-of-plane, into a bowl-like shape. The 

membrane is then able to take on a range of positions of the unit cell, as well as expand and 

compress. Three positions which demonstrate the shear capacity of the membrane are: sheared to 

the right (shown in Figure 11), unit cell equilibrium (Figure 6), and sheared to the left (the mirror 

image about the Y-axis of Figure 11). The unit cell equilibrium (where the flexures are unstressed) 

is the position half way between the two sheared positions. When the unit cell is in its equilibrium 

position, the four arms of the star are folded in half about their center axes. 

 

 
Figure 11 Unit cell in sheared position, the dotted lines show the positions of the eight shields 
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Figure 12 The perimeter of the origami membrane with fold lines that permit 
tension/compression and shearing of the unit cell. 

 

The portion of the origami membrane that resides in the center of the unit cell is a more 

complex piece. Its complexity comes from the fact that it is concerned with the motion of eight 

shields. The requirements for the center of the membrane are that it does not interfere with the 

motion of the edges and that it satisfies the requirement that origami fold patterns be two-colorable. 

The fold pattern shown in Figure 13 satisfies these requirements. 

Appropriate dimensions were determined based on the dimensions of the edge and corner 

pieces. The combination of sections V and VI in Figure 13 is similar to section D in Figure 10 but 

in a mirrored orientation. The design of Figure 13 is essentially four corner pieces (such as the one 

shown in Figure 10) connected to four edge pieces (such as the one shown in Figure 9), with a 

diamond fold structure in the middle of it. 
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Figure 13 Schematic of the center piece of the origami membrane 

 

 

 
Figure 14 The border of the origami piece with the corners collapsed, and the edges 
expanded 

 

The three hashed lines that run horizontal and vertical in Figure 13 are fold lines. The 

sections which are enclosed by those lines allow the membrane to expand in the X and/or Y-

direction(s). The solid lines which form diamonds in the center of the figure are fold lines which 

allow the membrane to fold into the shear positions. 

When the corners and edges are all brought together, the way they are in the equilibrium 

position, the membrane would look the same as the equilibrium position shown in Figure 6. When 

the corners are brought together but the edges are not, it appears the way it does in Figure 14. Note 

that in this context, expanded means that the membrane material between two adjacent shields 
 

Copyright by ASME, Andrew J. Katz; Craig P. Lusk, Paper Number DETC2015-47595 
 

22 
 



www.manaraa.com

(section B of Figure 9) is expanded in tension, and collapsed means that the edges of two adjacent 

shields are brought together, and the membrane material between them (section D of Figure 10) is 

folded over. 

 

 
Figure 15 Side view of two adjacent shields, showing how the origami membrane 
mounts to them 

 

As previously stated, the unit cell is designed to be able to expand or contract in the X 

and/or Y-direction(s). The design allows the unit cell to expand one inch in the X-direction and/or 

one inch in the Y-direction. Part of the integration of the origami membrane was attaching the 

origami membrane to the unit cell. The chosen method of attaching the membrane to the shields 

was pop rivets. Figure 15 is not to scale, section B would be one inch long. 

 

2.3.1 Origami Results 

(A) (B) (C) (D) 
 
Figure 16 The printed prototype of the origami membrane 
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Figure 16A shows the origami membrane with certain sections bound (from Figure 12, 

section I bound to II and section III bound to IV, as described previously), but all other sections 

expanded. Figure 16B shows the origami in its fully compressed position. Figure 16C shows it in 

the equilibrium position (half way between the two shear positions), and Figure 16D shows it in 

the shear position. Currently, operating the membrane requires a fair amount of manipulation. One 

of the plans for future work is in making the operation processes simpler. 

 

2.4 Conclusion 

A design has been presented which combines the strength of solid parts with the waterproof 

seal and flexibility of a flexible membrane, thus creating a waterproof barrier which could 

potentially be used to separate fluids in a body of water. The optimization of the compliant link 

achieved a reduction of internal stress during operation. This type of device could have 

applications in the maritime industry for separating a spilled fluid from another fluid such as a 

body of water, or also in the medical industry to separate a sterile area from a non-sterile area. 

Future plans for this project are a test with a waterproof membrane, with appropriately located 

connectors between the shields and the membrane, allowing for controlled manipulation of the 

membrane. 
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CHAPTER 3: DESIGN OF AN ORIGAMI FOLD PATTERN FOR SHAPE-MORPHING  
 

TRIANGLES 
 

Portions of Chapter 3 are currently in the publication process by ASME. Publication and 

ASME copyright pending presentation at the ASME IDETC2016 conference, August 21-24, 2016, 

Charlotte, NC. This content is reproduced with permission from ASME. I (Andrew Katz) was the 

first author, and my advisor Dr. Craig Lusk was the second author [2].  

 

3.1 Introduction 

There are two fundamental goals to this project. The first objective is to design an origami 

fold pattern whose kinematics mimic the kinematics of an existing bistable shape-morphing 

mechanism [75]. The second objective is to find a general method using origami, for morphing 

one triangle into another. Many shapes can be approximated by tessellating their surfaces with 

triangles. Morphing one shape into another can conceivably be accomplished by morphing the 

triangles from one shape, into the triangles that tessellate the other shape.  

Possible applications for this technology could be found in multiple types of machinery. In 

our example the original mechanism is in the shape of a cylinder, therefor it could potentially be 

used as a pipe. Given its ability to change shape (go from cylindrical to hyperbolic), it could be 

used to change the amount of fluid flowing into a system. An example of which would be to adjust 

the amount of airflow being let into an engine. 
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The scope of the project is to create a fold pattern for a piece of origami that would be able 

to change shape in the same way that the existing shape morphing mechanism does. Included in 

the scope is to demonstrate that the method for creating this type of origami pattern is general, i.e. 

applicable for different dimensions.  

 

 

 

 

 
(A) 

 

 

 

 

 
(B) 

 
Figure 17 The mechanism in the undeformed state (A), which forms a cylinder, and the 
deformed state (B), which forms a hyperboloid. Adapted from [75]. 

 

This project was based on an existing design for a shape-morphing mechanism, made of 

Linear Bistable Elements (LBEs) [75]. This mechanism consisted of a series of unit cells, in the 

shape of strips of triangles. Each strip is comprised of eight triangles oriented to form a vertical 

rectangle. When oriented around a center, the strips formed a cylinder as shown in Figure 17A. 

During actuation the linear bistable elements used to form the unit cell get shorter. By actuating 

the bistable elements, the strips shrink, thus morphing the cylinder into a hyperboloid as shown in 

Figure 17B. The two stable states of the mechanism will be referred to as the undeformed and 

deformed states. The undeformed state refers to when the LBEs are in their extended position. In 

the undeformed state, the triangles that form the unit cell are all right isosceles triangles. The 
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deformed state refers to when the LBEs are in the shorter, contracted position. In this position, the 

triangles become scalene.  

The purpose of a foldable origami piece with similar kinematics to that of the mechanism, 

is that if it were made of a waterproof material then it could serve as a waterproof membrane to 

the mechanism. This would result in a waterproof membrane which would move in the same way 

as the mechanism itself. The concept of a waterproof origami membrane was presented in a 

previous paper [2] for a shape-morphing mechanism which was square instead of triangular. 

 

3.1.1 Background 

A bistable mechanism is a mechanism which has two stable energy states. These are states 

in which the mechanism does not tend to change its position or shape [1]. The two stable states of 

our group’s shape-morphing mechanism are an undeformed state, in which the mechanism is a 

cylinder, and a deformed state, in which the mechanism becomes a hyperboloid. In both states the 

cylinder is open ended. The mechanism is made of a series of linear bistable elements. There are 

four unique LBEs. One of the LBEs is shown in Figure 18. 

 

Figure 18 Example of one of the linear bistable elements. Adapted from [75]. 
 

To design the origami fold pattern, the mechanism was discretized into a series of ten unit 

strips of LBEs assembled around one another to form a cylinder.  
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(A) 

 
 
 
 
 
 
 
 

(B) 
 
Figure 19 (A) is the undeformed unit strip, (B) is the deformed unit strip. Adapted from 
[75]. 

 

The unit strips are then further divided into eight triangles, four of which are unique, the 

other four are mirror images of the first four. The geometry in Figure 19 is simplified as a series 

of triangles, seen in Figure 20. The origami is then designed based on the unique four triangles 

henceforth referred to as the major triangles, which each have an undeformed and a deformed 

state.  

 
 
 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 
 
 

(B) 
 
Figure 20 Simplified model of the unit strips. (A) is undeformed and (B) is deformed. 

 

In their deformed states, each of the four triangles are unique. In their undeformed states 

they are all identical right isosceles triangles. It is also worth noting that in the deformed state, the 
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number 1 triangle is isosceles, while the 2, 3, and 4 are scalene. The #5 triangle is a mirror image 

of the #4, the 6 is a mirror of the 3, the 7 is a mirror of the 2, and the 8 is a mirror of the 1. 

The first goal of the project was to design an origami fold pattern which would be able to 

fold into the shape of the unit strip in each of the two states shown in Figure 20. To accomplish 

this, the design of the origami was divided into four parts, one for each of the unique triangles. 

Each origami part would need to be able to fold into the deformed and undeformed state of its 

respective triangle within the mechanism. The fold patterns on the edges of adjacent triangles need 

to be compatible. 

In order to understand how an origami pattern is synthesized it is important to understand 

the rules and conditions of origami that must be met in order for a fold pattern to be capable of 

folding down to a flat sheet. The rules are as follows: 

1. The fold pattern must be two-colorable. This means that if each section of the fold pattern 

(enclosed by the fold lines) was colored with two alternating colors, then there can be no 

two adjacent sections of the same color [76]. Another way of explaining this is that at every 

node (where fold lines meet) there must be an even number of fold lines that meet at the 

node. 

2. Maekawa’s theorem states that the sum of all positive (mountain = +1) and negative (valley 

= -1) fold lines entering a node must be a positive or negative even number [77] e.g. +2, -

2, +4, -4, etc. 

3. Kawasaki’s theorem states that at every node, if the sections around the node were 

numbered, then the sum of the odd angles must be equal to 180°. The same must be true 

for the even sections [78]. 
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4. Self-intersections cannot occur at overlaps [79]. 

Another way of thinking about rules 1 and 2 is that the paper surrounding each node (fold 

line intersections) acts as parts of a spherical mechanism, where the fold lines are the joints and 

the sections between the folds are the links [81]. Rules 1 and 2 guarantee that each spherical 

mechanism has mobility. 

 

3.2 Design 

In designing our origami pattern we chose solutions with minimal Degrees Of Freedom 

(DOF’s). We recognize that this type of problem could be solved in multiple ways, including 

designs similar to the Miura map pattern [82]. There has also been related research in this type of 

topological analysis [80]. We are assuming that our approach will result in fewer fold lines and 

hence will reduce cost and complexity of the final design. Our design process for the origami fold 

pattern is as follows: 

1. Design of the footprint (the outer edges) 

2. Adding fold lines that allow for the morphing of the outer edges 

a. First for the undeformed unit strip 

b. Then for the deformed unit strip 

3. Adding fold lines to satisfy the origami design rules 

a. First for the undeformed unit strip 

b. Then for the deformed unit strip 
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3.2.1 Design of the Footprint (Outer Edges) 

In order for a piece of origami to take on the undeformed and deformed state, a third state, 

the printed state was necessary. This means that the origami will be printed in one state (a non-

regular hexagon), and it can then be folded into the undeformed and deformed states thereafter. 

Once the deformed and undeformed fold patterns were designed, they were superimposed onto 

one another to form the final fold pattern, which can fold to either the deformed or the undeformed 

state. 

As shown in Figure 21 the sides of each triangle in their undeformed states are denoted as 

L1, L2, and L3, where L1 is the hypotenuse of the triangle, L2 is the first side clockwise of the 

hypotenuse, and L3 is the second side clockwise of the hypotenuse. The interior angles of each 

triangle are denoted as θ1, θ2, and θ3, where θ1 is opposite L1, θ2 is opposite L2, and θ3 is opposite 

L3. In their deformed states, the sides are denoted as l1, l2, and l3, and the angles are denoted as θ1
’, 

θ2
’, and θ3

’ where θ1
’ is opposite l1, θ2

’, is opposite l2, and θ3
’, is opposite l3.  

The angle bisectors in Figure 21A and B separate what will be referred to as the minor 

triangles, which are useful in defining the morphing from the printed state to the deformed and 

undeformed states. 

 
 
 
 
 
 

(A) 

 

 

 
 

(B) 
 
Figure 21 Labeling convention for the major triangles in the undeformed (A) and 
deformed (B) states. The example shown is applicable to triangle #2 in Figure 19. 
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As shown in Figure 22, the footprint is comprised of sides S1, S2, and S3, where S1 is the 

larger of L1 and l1, S2 is the larger of L2 and l2, and S3 is the larger of L3 and l3. The angles of the 

footprint are θ1’, θ2’, and θ3’. In designing the origami fold pattern, the sides of the footprint (S1, 

S2, and S3) could be oriented parallel to the sides in Figure 21A, Figure 21B, or neither. The 

orientation of the sides in Figure 22 is parallel to the orientation of the sides in Figure 21B. This 

was done because it was found to be the simplest solution after trying all three methods. 

Throughout this Chapter, simplest means that it was simplest to synthesize and operate because 

the L-infinity norm of the number of folds between the deformed and undeformed states was 

smaller. Folding to the deformed state requires side length changes, while going to the undeformed 

state does not, therefore it was simpler to make the footprint parallel to the deformed state, thus 

reducing the complexity of the more complex state. 

 

 
Figure 22 Nomenclature for the footprint (shown for the #2 triangle). The distance 
between the endpoints of the S’s is arbitrary at this point 
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3.2.2 Morphing the Outer Edges 

Each major triangle is then sub-divided into three minor triangles, one for each of the sides 

of the major triangle. In this context the minor triangles each represent a rigid plane, and the space 

between the minor triangles represents the joints connecting the rigid planes. 

 
 
 
 
 
 

(A) 

 
 
 
 
 
 

(B) 

 
 
 
 
 
 

(C) 
 
Figure 23 1 DOF triangle mechanism (A), 2 DOF triangle mechanism (B), and 3 DOF 
triangle mechanism (C) 

 

As shown in Figure 23C, in the most generic case, the major triangles each have three sides 

and three angles, all of which can potentially change (the triangles in Figure 23 are kinematic 

models, their dimensions do not coincide with the dimensions of the triangles in the project). Each 

of the sides can change length and each of the corners can rotate to change its angle. If all three 

sides and all three angles change, the mechanism has three degrees of freedom. In the case of 

triangle 1 (from Figure 20), all three angles change and only one side length will change, making 

it a one DOF triangle, similar to the model shown in Figure 23A. In the case of triangles 2, 3, and 

4 all three angles change, and two sides change length making them two DOF triangles, similar to 

the one shown in Figure 23B. 

The number of DOF in each triangle is a design choice. Even if only one side is required 

to change length (as in triangle #1), it is still possible to initially extend the triangle’s side lengths 

and then later compress them during operation. For this problem, the triangles were chosen to be 
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one and two DOF instead of three because they were found to be simpler to synthesize and operate, 

during experimentation. For the origami to go from the printed state to the undeformed state, all 

three angles must change, and all three sides must stay the same in length (for triangles #2 - #7). 

The angles that form the minor triangles are calculated as follows: 

𝜑𝜑 =
1
2

(𝜃𝜃3′) (25) 

𝜓𝜓 =
1
2

(𝜃𝜃1′) (26) 

𝛼𝛼 =
1
2

(𝜃𝜃2′) (27) 

where φ, ψ, and α are shown in Figure 24.  

 

 
Figure 24 The footprint of the #2 triangle with the undeformed minor triangles shown 

 

The minor triangles are the ones adjacent to sides S1, S2, and S3 and are the same as the 

ones shown in Figure 21A. Connecting lines (E1, E2, and E3) between the minor triangles have also 

been added for Figure 24. Although the geometry of the outer shape in Figure 24 forms a non-

regular hexagon, when it is folded into the undeformed state, it forms the triangle shown in Figure 

21A. The sides E1, E2, and E3 are not sides of the triangle, they simply bridge the gaps between 

the minor triangles. The angles β, γ, and κ are the excess angles.  
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𝛽𝛽 =
1
2

(𝜃𝜃3′ − 𝜃𝜃3) (28) 

𝛾𝛾 =
1
2

(𝜃𝜃1′ − 𝜃𝜃1) (29) 

𝜅𝜅 =
1
2

(𝜃𝜃2′ − 𝜃𝜃2) (30) 

It is noteworthy that the signs of β and γ are negative while the sign of κ is positive. The 

result of this is that the lines defining the angle κ converge exterior to the hexagon while the lines 

defining the β and γ converge towards the interior of the hexagon. 

This process is then repeated to form the minor triangles associated with the deformed 

triangle. In order to go from the printed state to the deformed state, the origami would need to 

close the gaps between the minor triangles and have two of the side lengths change. The angles 

that form the deformed minor triangles are calculated as follows: 

𝜑𝜑′ =
1
2

(𝜃𝜃3) (31) 

𝜓𝜓′ =
1
2

(𝜃𝜃1) (32) 

𝛼𝛼′ =
1
2

(𝜃𝜃2) (33) 
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Figure 25 The footprint of the number 2 triangle with the deformed minor triangles is 
shown. The outer edges are the same as the ones in Figure 24. 

 

The three lines perpendicular to the left and bottom sides of Figure 25 represent lines that 

allow shortening of those respective sides. A design choice that was made to simplify folding of 

the origami was that β’, γ’, and κ’ are all zero. The reason this was done was because it was 

observed that in general, a fold that is pure translation (such as the gaps between the minor triangles 

in Figure 25) is easier to make than a fold that is both translation and rotation (such as the gaps 

between the minor triangles in Figure 24). The choice was that either β, γ, and κ could be zero, or 

β’, γ’, and κ’ could be zero. The reason that the deformed major triangle was given the zero angles 

at the gaps between the minor triangles was because there are more complicated folds in this state, 

due to the length changes on the sides. The reason that the undeformed and deformed triangles 

could not both have zero degree excess angles was because if they did then their footprints would 

not be the same. 
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The lines shown in Figure 24 and Figure 25 are sufficient to morph the outer edges of the 

printed state to the deformed and undeformed states respectively, but do not a represent a complete 

origami fold pattern due to the fact that they are missing lines in the interior. 

 

3.2.3 Satisfying Origami Design Rules 

It is noteworthy that there exists multiple solutions to the interior of each printed state. The 

solutions that were chosen for each of the printed states were the ones that were observed to be the 

simplest of the found solutions. The method for finding possible solutions to the interior of the 

printed states was based on observing the rules of origami and experimentation. The experimental 

part consisted of printing the triangle as seen in Figure 24, making the folds that were known to be 

necessary, then folding the remainder down flat. It was observed that when folding the remainder 

of the material down flat, a number of new nodes would be introduced to the fold pattern, and that 

the number of new nodes was dependent on the number of enclosed origami sections that were 

adjacent to the remainder material. Meaning, the more origami sections that were adjacent to the 

remainder material, the more new nodes would be introduced to the fold pattern. After this is done 

it can be readily observed where the necessary fold lines occurred in the interior of the printed 

state. The lines are then adjusted to ensure that the final dimensions are correct, as prescribed by 

the design of the mechanism. The final design for the undeformed version of triangle #2 is shown 

in Figure 26.  
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Figure 26 Final drawing for the origami for the undeformed triangle #2 

 

The solid lines at the borders of the design are not fold lines. The solid lines within the 

drawing are positive folds. The centerlines are negative folds. The minor triangle that previously 

existed at the bottom of the hexagon was part of the design process but does not get folded and so 

was removed from the final design. These conventions are maintained throughout the remainder 

of the drawings.  

The fold pattern for the undeformed triangle was simpler to synthesize, in part because it 

is a right triangle, and two of the angles are equal. The method for determining the interior fold 

lines for the printed state was to make the exterior folds for the deformed state, then to flatten the 

interior and observe the resulting fold lines. As can be seen in Figure 27 the deformed triangle was 

more complicated because of the length changes of the sides. The final drawing for the deformed 

triangle #2 is shown in Figure 27. 
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Figure 27 Final drawing for the origami for the deformed triangle #2 

 

The process described in sections 2.2 and 2.3 is then repeated to generate fold patterns for 

the #3 and #4 triangles. The results are shown in Figure 28. 

 

 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 

(B) 
 
 
 
 
 
 
 

(C) 

 
 
 
 
 
 
 

(D) 
 
Figure 28 (A) Undeformed version of triangle #3, (B) deformed version of triangle #3, 
(C) undeformed version of triangle #4, and (D) deformed version of triangle #4 
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The process for synthesizing triangle #1 is slightly different from the other three. This is 

because only one of its side lengths changes, making this a simpler problem to solve. The 

procedure was similar for this triangle, however all of the length and angle changes were placed 

in the deformed state. The final drawing is shown in Figure 29. 

 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 

(B) 
 
Figure 29 (A) Undeformed version of triangle #1 and (B) deformed version of triangle 
#1 

 

All of the fold patterns shown up to this point are for the upper four major triangles of the 

unit strip (triangles 1-4 from Figure 20). 

 

3.2.4 The Unit Strip 

The geometry and kinematics of the lower four major triangles (#5-8 in Figure 20) of the 

unit strip are the same as that of the upper four (#1-4). The fold pattern however is slightly different 

for the deformed versions of the #3 and #4 triangle. The reason for this is because the fold lines 

along the adjacent edge of two major triangles must be the same. If the upper triangles were 

mirrored to form the lower triangles, they would have opposite direction Z-folds, which would not 

be continuous. In order to make the folds on adjacent edges continuous, the layering of the folds 
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must be opposite in the upper and lower triangles. The lower versions of these triangles are shown 

in Figure 30. 

 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 

(B) 
 
Figure 30 The lower, deformed versions of the (A) #3 triangle and the (B) #4 triangle 

 

As shown in Figure 31A, the undeformed versions of the major triangles are then 

assembled together to form the entire undeformed unit strip. 

(A) (B) (C) 
 
Figure 31 The complete fold pattern for the undeformed unit strip (A), the deformed 
unit strip (B), and the unified unit strip (C) (the undeformed and deformed 
superimposed onto one another) 
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As shown in Figure 31B, the deformed versions of the major triangles are then assembled 

together to form the complete deformed unit strip. The final fold pattern is created by 

superimposing the undeformed unit strip onto the deformed unit strip, this creates the final, unified 

unit strip, seen in Figure 31C. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(A) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
 
Figure 32 Undeformed (A) and deformed (B) mechanism, with unit strips of the 
origami mounted to it 

 

The mechanism in each of its states, with one unit strip of the origami mounted to it is 

shown in Figure 32. Figure 32 shows two separate, static structures, where the undeformed origami 

is in blue and the deformed origami is in yellow.  

 

3.3 Conclusion 

In this project, a process has been demonstrated for synthesizing an origami fold pattern 

which can fold to two different versions of a triangle. This ability allows for a membrane with an 

origami fold pattern on it to mimic the kinematics of another shape-shifting mechanism. In this 
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way, such a membrane could be used as a waterproofing barrier for the mechanism that it mimics. 

Future plans for this project are to mount the unified origami (shown in Figure 31C) to Alqasimi’s 

mechanism, which morphs from a cylinder to a hyperboloid. Future plans for this project are to 

make the folding of the origami automated and simpler, as well as measuring its efficacy as a 

waterproof barrier. 
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CHAPTER 4: STRESS-LIMITING TEST STRUCTURES FOR RAPID LOW-COST  
 

STRENGTH AND STIFFNESS ASSESSMENT 
 

Portions of Chapter 4 were previously published to the Solid Freeform Fabrication 

conference in 2014 where it won an award for one of the best papers in conference and was 

automatically submitted to, and then published in the Rapid Prototyping Journal in 2015 and has 

been reproduced with permission from Emerald Group Publishing. I (Andrew Katz) was the first 

author, my advisor Dr. Craig Lusk, as well as Dr. Nathan Crane and Justin Nussbaum were also 

authors [83]. The specimen design and simulation sections of the paper were my primary 

contributions, however I did also help write other parts of the paper.  

 

4.1 Introduction 

Additive manufacturing (AM) refers to processes that build up parts by adding material 

under computer control. This enables the fabrication of a wide variety of different geometries with 

drastically reduced costs of variety [84]. However, the process does not just form geometry, it 

forms a material locally. In many processes, the material properties are sensitive to the processing 

methods and may vary with parameters such as position, orientation and ambient conditions to 

name a few [85] - [89]. As AM processes move from making interesting geometries, to producing 

functional parts and systems, the control of these properties becomes increasingly important [90]. 
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To address this challenge, there is an increasing focus on process monitoring and control, 

particularly online process monitoring [91], [92].   

There is also a need for effective monitoring of the finished products. The objective of this 

work is to describe a low cost means of evaluating the modulus (resistance to deflection) and 

strength (resistance to failure) of thin beams printed using Additive Manufacturing (AM) 

processes. To this end, we describe two tests, the first of which, the stiffness test, is non-

destructive, and the second, the strength test, when conclusive, results in fracture or permanent 

deformation of the part. Both tests require limited or no specialized measurement equipment and 

can be performed using a simple printed structure illustrated in Figure 33. 

 

Figure 33 Photo of the basic test geometry in its “as-printed” (left) and deformed 
(right) positions 

 

These tests are intended to complement and perhaps substitute for the standard tensile and 

flexural bending tests which are performed using immobile and expensive tensile testing 

equipment. They may also have some utility in process control or material evaluation, in that they 
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capture the key performance measures for structural integrity in simple, inexpensive tests. Thus, 

researchers seeking to improve the properties of an AM material could use these tests to ensure 

that they had not seriously compromised the structural utility of the material. The test method 

could be applied in production as an inexpensive method of verifying the stability of the production 

process. It may also provide a simple way for Do It Yourself (DIY) 3-D printing enthusiasts to 

assess the quality and stability of their processes using equipment they already have available. 

The theory on which the measurement method is based is reviewed below. The subsequent 

sections describe how this design was implemented and tested using thermal extrusion processes. 

Stress test results are reported for a series of parts produced on a Stratasys Dimension 768 system.  

Stiffness measurements are reported for parts produced on two different thermal extrusion 

systems: RepStrap, and the Dimension 768. All tests were done using Acrylonitrile Butadiene 

Styrene (ABS) materials, each with its own feedstock. 

 

4.2 Theory 

We first describe the theoretical basis for the stiffness test. Our measurement method is 

based on measuring the natural frequency of a printed test structure. Vibrational frequencies of 

cantilever beams have previously been used to measure the modulus of elasticity of a variety of 

materials using both force and optical sensing methods [93] - [95]. This method has been covered 

in detail by ASTM standard E1876-01 [96]. This method requires only the test part, a striking 

mechanism such as a hammer and frequency sensing device, which could be a smart phone with 

an accelerometer or a microphone depending on the material and natural frequency of the part. 
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In order for a vibration to occur, there must be a disturbance of some of the mass in a 

system from equilibrium. Further, that system must be capable of producing a restoring force that 

drives the mass back to its equilibrium position. The interaction of the restoring force and the 

mass’s inertia produce oscillatory motion about the equilibrium position of the mass. In its simplest 

form, the location of the mass is described by a position coordinate, x(t), as a function of time. The 

differential equation describing the moving mass, m, of the system is given by: 

𝑚𝑚�̈�𝑥 + 𝐹𝐹(𝑥𝑥) =  0. (34) 

When the displacement of the mass is small, and the mass does not rotate, the restoring force, F(x), 

can often be written as a linear function of the position. Thus, when the equilibrium position is 

taken as the origin for the x-coordinate, the governing equation is: 

𝑚𝑚�̈�𝑥 + 𝑘𝑘𝑥𝑥 =  0 (35) 

where k is a measure of the stiffness of the system. The solution to equation (2) is given by 

equations of the form: 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos (�𝑘𝑘 𝑚𝑚⁄  𝑡𝑡 + 𝜑𝜑) (36) 

where A, and 𝜑𝜑 are the amplitude and phase respectively, and their values depend on the details 

of the system’s disturbance from equilibrium. On the other hand, the frequency of the oscillation 

of the system, �𝑘𝑘 𝑚𝑚⁄ , only depends on the system stiffness and moving mass. For our test, the 

moving mass is estimated as half of the total mass of the printed part, based on the symmetry 

between the fixed lower half and the moving upper half. Thus, by measuring the vibration 

frequency, 𝜔𝜔, of the part when it is tapped lightly, we can use the part’s moving mass, m, to 

determine its stiffness: 
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𝑘𝑘 = 𝑚𝑚𝜔𝜔2 (37) 

the stiffness value, k, is specific to a given geometry and material, and can be used to track the 

repeatability of an AM machine’s building of a target geometry.  

The governing equation (35) neglects energy losses from the system, and so equation (36) 

predicts that the vibrations will occur ad infinitum at the same magnitude. Of course this never 

happens, and the length of time that a part vibrates is indicative of the speed at which energy is 

lost from the system as heat or sound. The exclusion of such damping effects means that equation 

(37) tends to slightly over-predict the stiffness of a system. The amount of over-prediction depends 

on the internal damping in the material. For example, we were able to observe thirty periods of 

oscillation in an ABS part but only eight periods of oscillation in an acrylic part with the same 

geometry. Thus, we would assume that there is lower damping in the ABS, and the stiffness value 

obtained using equation (37) is closer to correct for the ABS part than for the acrylic one. 

In the parts we were testing, the restoring force was provided by two identical thin flexures 

undergoing bending when the moving mass was plucked. Based on the dimensional 

considerations, we can surmise that the first bending mode with the lowest frequency is the 

fundamental vibration mode. Additionally we can conclude that based on the physics of the 

problem and the necessity for consistent units that the stiffness of the beam can be related to 

geometric and material parameters as follows: 

𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎/𝑙𝑙 (38) 

where E is the tensile modulus, I is the second moment of area, and l is the length of the beam. 

The proportional constant, a, is a dimensionless number that is specific to the shape of the part. 
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Theoretical values for a have been tabulated for various ideal loading conditions [97], but these 

are difficult to relate effectively to actual parts because the proportional constant is quite sensitive 

to the specifics of how the beams are attached to the moving and fixed portions of the system. 

However, the constant, a, can be measured experimentally or predicted using Finite Element 

Analysis (FEA).  

It may be desirable to compare the stiffness results of two parts which are printed from the 

same Computer-Aided Drawing (CAD) file using different process parameters or printing 

orientations. In this geometry, the stiffness will be particularly sensitive to the width of the flexible 

segments. Variations in other dimensions and the internal fill structure will be reflected in the 

overall weight of the part. The reference part could be a part of known properties or it could be the 

as-designed component using frequencies predicted analytically and calculated part mass. Taking 

the reference part as having mass, m0, and stiffness, k0, and the new part having mass, m1, and 

stiffness k1, we can define: 

𝛼𝛼 = 𝑚𝑚1/𝑚𝑚0 (39) 

and 

𝛽𝛽 = 𝑘𝑘1/𝑘𝑘0. (40) 

From equation (37), the ratio of vibration frequencies of the two parts is: 

𝜔𝜔1

𝜔𝜔0
= �𝛽𝛽

𝛼𝛼
. 

(41) 

Using equation (38), taking the second moment of area for a rectangular beam, I = w3t/12, and 

canceling the part thickness  t, we can write equation (40) as: 
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𝛽𝛽 = (𝑎𝑎1𝑤𝑤13)/(𝑎𝑎0𝑤𝑤03). (42) 

Then solving equations (39) – (42) for the ratio of moduli, we can see if process changes have 

affected the bulk stiffness of the material, by calculating: 

𝑎𝑎1/𝑎𝑎0 = (𝑚𝑚1𝜔𝜔1
2𝑤𝑤0

3)/(𝑚𝑚0𝜔𝜔0
2𝑤𝑤13). (43) 

The second test measures the strength of the material used in a bending test. This test does 

not measure the strength directly but is based on the relationships between bending and internal 

moment, and internal moment and stress. The Bernoulli-Euler hypothesis asserts that the 

relationship between bending and the internal moment is: 

𝑀𝑀(𝑐𝑐) = 𝑎𝑎𝑎𝑎/𝑅𝑅(𝑐𝑐) (44) 

or in words, the moment at a point, s ɛ(0,l), along a beam is equal to the beam stiffness, EI, divided 

by its radius of curvature (change in radius of curvature if initially curved). The stress due to 

bending is: 

𝜎𝜎 = 𝑀𝑀𝑀𝑀/𝑎𝑎 (45) 

where y is the distance from the neutral axis of the beam, which is a maximum at a distance c = 

w/2, i.e. half the width of the beam. Putting equations (11) and (12) together, and rearranging one 

finds that: 

𝜎𝜎/𝑎𝑎 = 𝑐𝑐/𝑅𝑅. (46) 

In other words, the ratio of stress to modulus equals the ratio of half the width of the beam 

to the radius of curvature of the beam. This means that if a beam is bent across a series of circular 

cams (different R values), the stress in the beam will increase as the radii of the circular cams 

decrease. There is a certain radius cam for which the beam will experience its fracture stress or a 
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0.2% offset yield strength (i.e. the stress which causes 0.2% permanent strain in the beam). These 

failure stresses can therefore be associated with specific geometries or cam radii, which can be 

fabricated as the test geometry. If the beam can be bent ninety degrees around the cam without 

experiencing failure, the beam is stronger than expected. Thus, by building and testing parts with 

decreasing test radii, increasingly severe stress tests may be imposed on the material. As equation 

(41) associates a specific stress with a given cam radii (assuming that the modulus is known), the 

tests allow bounds on the fracture stress to be found.  

The situation is more complicated for materials with beams that do not fracture when bent 

across cams of the smallest feasible size. For example, we found using ABS beams of one 

millimeter width that we saw increasing amounts of plastic deformation but that fracturing a thin 

beam required a 180° fold of minimal radius. When beams undergo plastic deformation but do not 

fracture, we observe that the stress in the beam is constant in the section that is in contact with the 

cam. 

 

 
Figure 34 Geometry of the deformed test structure 
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We can therefore assume that the amount of residual plastic strain, εp, in the beam is 

constant along each half of the beam (one half of the beam is bent across the bottom cam and the 

other half is bent in the opposite direction across the top cam). Thus, each half of the beam is 

deformed into a circular arc, with radius Rp, subtended arc θ, and arc-length L/2. Using the 

geometry of circular arcs, we find:  

𝑅𝑅𝑝𝑝𝜃𝜃 = 𝐿𝐿/2 (47) 

and  

𝑅𝑅𝑝𝑝(1 − cos(𝜃𝜃)) = 𝛿𝛿/2 (48) 

where δ is the horizontal translation of the top of the part relative to the bottom caused by the 

plastic deformation of the thin beams. This can be related to the residual plastic strain in the fibers 

of the beam by particularizing equation (46) as follows: 

𝜀𝜀𝑝𝑝 = 𝜎𝜎/𝑎𝑎 = 𝑐𝑐/𝑅𝑅𝑝𝑝. (49) 

By combining equations (47) - (49), we can express δ in terms of the residual strain, and the beam 

width and length as: 

𝛿𝛿 =
𝑤𝑤
𝜀𝜀𝑝𝑝
�1 − 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝐿𝐿𝜀𝜀𝑝𝑝
𝑤𝑤𝑏𝑏

��. 
(50) 

Equation (50) can be used to solve for the residual strain, when the deformed horizontal translation 

is known. The displacement associated with a 0.2% strain is: 

𝛿𝛿 = 500𝑤𝑤 �1 − 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝐿𝐿

500𝑤𝑤
��. (51) 

On the other hand, we can compare the residual strain to the applied strain, which comes from 

bending the beams over the cams. The radius of curvature of the beams is: 
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𝑅𝑅𝑑𝑑  =  𝑅𝑅 + 𝑐𝑐 (52) 

where Rd is the radius of curvature of the beam, R is the radius of the cam, and c is half the width 

of the beam. The applied strain in the beam is: 

𝜀𝜀𝑎𝑎 = 𝜎𝜎/𝑎𝑎 = 𝑐𝑐/𝑅𝑅𝑑𝑑 . (53) 

The strain recovered when the beam is unloaded is  

𝜀𝜀𝑟𝑟 = 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑝𝑝. (54) 

 

4.3 Specimen Design 

The test part is designed to leverage these pure bending effects possible with a cam to 

create a defined loading condition without requiring expensive testing equipment. Figure 35 

defines the key parameters in the specimen design. The top and bottom rectangular sections 

provide both a solid base for attachment and a mass that drives the oscillation. Equation (46) was 

used to calculate what the radius should be. The beam width, 2c, was selected based on the size of 

the feature we wished to test. These tests were done with a width of one millimeter. It should be 

noted that failure modes in AM parts can vary with size, but a smaller value of beam width (2c) 

will result in smaller test structures.  
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Figure 35 Definition of key geometric parameters in the test structure 

 

This indicates what the cam radius should be to cause the beam to yield when bent across 

it. Using these basic relationships, a radius and beam width (c) can be selected that will evaluate 

the minimum strength of the specimen. The strength can be bracketed by testing a range of 

different specimen sizes.  

Using a range of radii, one could find the smallest radius part would break or plastically 

deform and the largest radius part would not. More parts would be manufactured that were larger 

than the smallest radius until a radius value was found that does not break/deform the beam, but is 

only slightly larger than a radius which did break the beam. This would provide a lower bound for 

the ratio E/Sy. The same process would then be repeated starting from a large radius which did not 

cause failure in the beam, working down to a small enough radius that did cause failure in the 

beam, this process would confirm the ratio found in the previous step. Using a confirmed value of 

E, a value of Sy could then be determined, thus assessing the strength of the material. In process 
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monitoring, it may be sufficient to print just a single size that confirms a minimum required 

strength. 

The values for each of the cam radii used in this work can be found in Table 3 below. The 

other designs adjust the radius in steps of 10% of the nominal design D radius. The length of the 

beam was determined from equation (55) 

𝐿𝐿 = 𝜋𝜋𝑅𝑅 +  𝜀𝜀. (55) 

Table 3 Dimension values for each design of the part (in mm). All parts are 2.5 mm thick, 
except design I which is 5 mm. 

 

Design 
Cam  

radius 
(R1) 

Beam  
length 

(L) 

Beam  
width 
(W1) 

Gap (G) 

Base 
fillet  

radius 
(R2) 

Part  
width 
(W2) 

Relative  
size 

A 8.98499 30.2272 1 0.25 1.13 66 0.7 
B 10.2686 34.2596 1 0.25 1.13 66 0.8 
C 11.5521 38.2921 1 0.25 1.13 66 0.9 
D 12.8357 42.3246 1 0.25 1.13 66 1 
E 14.1193 46.357 1 0.25 1.13 66 1.1 
F 15.4028 50.3895 1 0.25 1.13 66 1.2 
G 23.1043 74.5842 1 0.25 1.13 100 1.8 
H 30.8057 98.7789 1 0.25 1.13 140 2.4 
I 10.2686 34.2596 1 0.25 1.13 66 0.8 

  

 

The beam must wrap around ninety degrees of the bottom cam and ninety degrees of the 

top cam. The factor of ε was two millimeters and was used to ensure that the beam was long enough 

to avoid a stress concentration at the base. The height of the parts was determined by the necessary 

length of the beam. In addition, it was necessary for there to be a space of material between the 

gap basin and the bottom/top edge of the part, this space was made to be at least seven millimeters 

in each of the designs. The gap basin was added because when there was no basin in the gap, the 
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smallest that the gap could be made was limited by the feature size of the machine. By adding the 

basin, the nozzle of the machine could get a much smaller gap as shown in the figure depicting the 

gap. With this basin, the gap could be made as small as 0.25 mm, which is the value used in each 

of the designs. The radius of curvature of the deformed beam is described by equation (52). The 

walls of the gap basin were made curved so that there would be a smooth transition in the walls 

which would help to prevent additional stress concentrations. The beam width was one millimeter. 

Table 3 shows each of the dimensions for each size part. The relative size column refers to the size 

of the given design relative to the nominal size which is design D. 

 

4.4 Test Procedures 

Test components were fabricated from ABS filament on one of four thermal extrusion 

machines (Stratasys Dimension 768, Stratasys uPrint, Makerbot X2, and a custom-built RepStrap 

machine utilizing RepRap electronics). Replications of each part were produced with identical 

printing files to avoid any extra variations in the part. After printing, each part was weighed and 

the width of the flexible segments was measured using calipers. The weight and measured beam 

widths were used in the estimates of the strain and elastic modulus of the samples. 

On the RepStrap components, the effective fill fraction was adjusted by changing the 

filament diameter setting in the control software to simulate the effect of variation in the filament 

diameter on the effective mechanical properties of the part. The parts were printed with settings of 

2.9, 3.1, and 3.2 mm while the actual filament diameter varies between 2.9 and 3.0 mm. These 

variations in fill factor were changed to help us test how feed stock with slightly varying diameter 

can affect the mechanical properties of the printed parts. 
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In addition to the test geometries described above, tensile and bending specimens were also 

prepared using the same printing parameters on both the Dimension and Custom-built RepStrap 

machines. Tensile and three point bend tests were conducted following ASTM standards D638-03 

and D790-03 respectively.  

A variety of methods exist for obtaining the vibrational response of a plucked part. For our 

tests, an inexpensive piezoelectric speaker was placed beneath the component, then clamped to a 

rigid structure (Figure 36). As the component vibrated the piezoelectric device output a voltage 

proportional to the force exerted by the oscillating free end. The piezoelectric speaker was then 

connected to an oscilloscope which provided the voltage vs. time response of the plucked part.  

 (A) 

 
 
 

(B) 
 
Figure 36 Schematic diagram (A) of test setup (B) for measuring the vibrational 
frequency of a plucked part 

 

If the component is metal and has a higher vibrational frequency, this test can be conducted 

with items as simple as a hammer and a microphone. A smart phone or tablet with an accelerometer 
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can also be used. By placing the part on the device and striking it, the accelerometer can pick up 

the vibrations. 

The plastic strain of the samples was evaluated by deforming the beams around the cam 

surfaces and then removing the loads. These loads were applied by hand while the part lay 

horizontal on a flat surface. During deformation, the samples were visually monitored to verify 

that they remained in contact with the cam surface. The deformed position was maintained for less 

than five seconds before being released. The parts were gently vibrated to reduce the impact of 

friction on the final position of the component. The residual horizontal offset between the top and 

bottom of the structure was then measured to the nearest 0.5 mm as an indication of the relative 

plastic deformation of the structures. These tests were done on samples A-H which were produced 

on the Dimension machine. The residual offset distance and the measured beam widths were used 

to calculate the residual strain using equation (50). Results are based on one sample of each part 

size. 

Vibration modulus testing was also conducted on the RepStrap specimens as well as on the 

Dimension 768 machine. These results were compared against tensile and three point flexural tests 

conducted on an 858 Material Testing System (MTS). The results for the Dimension 768 were also 

compared with the manufacturer’s specifications. The test specimen for the tensile and flexural 

tests produced by the RepStrap used layer heights of 0.5 millimeters thick and an infill angle of 45 

degrees. The samples produced by the commercial Dimension 768 machine used layer heights of 

0.25 millimeters. The infill angle formed by the Dimension 768 machine is unknown, however it 

can be assumed that it has been optimized to increase the strength of the part. Both the tensile and 
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flexural test specimens were 1 millimeter thick, the same thickness as the beam width for the test 

structure. 

 

4.5 Simulation 

Finite Element Analysis (FEA), modal analysis was performed on the design geometry to 

compare to the measured vibration frequencies. The simulation assumed ABS properties of E = 

2.0 GPa and a density of 1.02 g/cm3.  

 

 
Figure 37 Mode one vibrations as shown in Solidworks FEA 

 

The resulting mode shape is shown in Figure 37. As Table 4 shows, the difference between 

the measured frequencies and the simulated frequencies was relatively small for most of the parts. 

The exceptions are Parts G, H, and I. Parts G and H were the largest parts and the measured 

frequency appears to be the third mode. The FEA predicted third mode frequencies on parts G and 

H of 15.225 Hz. and 7.61 Hz. respectively. The difference between measured values and FEA 

predictions of the third mode is 15.42% and 4.58% respectively. The difference between measured 

values and FEA for part I was attributed to dimensional errors from manufacturing. When the 
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results were corrected for part mass and beam width, the modulus of elasticity estimation was 

consistent with other parts. Given the close match between the measured and simulated frequencies 

of the other parts, it is likely that the measured frequency for parts G and H were in fact the third 

vibrational mode. 

Table 4 Frequency values for each part from vibrations tests and FEA in Hz 
 

  Part A Part B 
Part 

C Part D Part E Part F Part G Part H Part I 
Measured 

 values 41.6 35.1 30.9 24.9 22.4 16.7 18.0 8.0 18.7 
FEA 39.5 32.6 28.1 23.2 21.2 18.1 7. 2 3.8 33.0 

Difference 5.1% 7.1% 8.9% 6.7% 5.4% -8.3% 60% 52% 76.3% 
 

 
 

Table 5 Specimen production scope 
 

 

 

4.6 Results 

The measured frequency data generally showed excellent repeatability for each individual 

part as seen in Table 5. The notable exceptions are parts G-1 and H-1. However, these samples 

appear to have been vibrating in multiple modes as discussed above.  

The relationship of equation (43) was applied to the samples using the nominal (as-

designed) density and FEA predictions of vibrational frequency to estimate the effective modulus 

 
This article is © Emerald Group Publishing and permission has been granted for this version to appear in the 

University of South Florida Repository. Emerald does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited. 

 
60 

 



www.manaraa.com

 

of elasticity for each combination of geometry and machine tested. The resulting vibration 

frequency calculations are grouped by machine and printing parameters and summarized in Table 

5 compared to the bending and tensile test data. The vibration data results were consistent with the 

values obtained by traditional tensile and bending methods. The standard deviations obtained from 

the RepStrap system were comparable in both cases. The high standard deviations in specimens G 

and H are attributed to measuring additional modes of vibration as also seen in Table 4. However, 

the parts produced on the commercial Dimension 768 machine produced more repeatable modulus 

measurements using the flexural and bending tests than was achieved with the vibration method. 

In order to determine how the printing orientation effected the modulus, the Stratasys 

uPrint and Dimension 768 were used to print the test structure in various orientations. The natural 

frequency was then recorded and used to find the modulus of elasticity as summarized in Figure 

39. There is a close resemblance with the manufacturer’s data for the specimens that were printed 

on-edge or flat on this print bed. The modulus values are expected to be similar as the deposition 

lines are oriented parallel with the print bed, unlike the upright orientation. However, the test 

specimens that were printed in the non-ideal orientation, standing up on the build platform in the 

Z-direction produced a significantly lower modulus as has been reported previously by Stratasys 

[98] and others [99]. 

By changing the effective filament diameter for the RepStrap in the control software to 

simulate a feed stock that was produced out of specification we are able to study effects on the 

mechanical properties. As the effective diameter of the filament was decreased, the AM machine 

increased the amount of material used, which produced a heavier part with a higher frequency and 

modulus. Since the natural frequency is related to the square root of the stiffness divided by the 
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mass (equation (37)), this is an indicator that the stiffness of the part has increased as well. A small 

standard deviation indicates good repeatability in manufacturing and measurement.  

 

 
Figure 38 Printing orientations, parts not to scale 

 

 

 
Figure 39 Modulus values measured by vibration method of test structures printed in 
various orientations 

 

The measured vibrational modulus from the RepStrap was well below both the flexural and 

tensile modulus found from material testing system. However, they were closer to the results of 
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the tensile tests than the flexural tests. This could be due to variations in the beam thickness 

throughout each part as well as other non-uniformities inherent in lower end 3D printers.  

 

 
Figure 40 Mechanical properties from various tests. The vibrational tests were 
conducted with varied effective filament diameter.  

 

The parts used in the strength test exhibited yielding but not fracture. Most of the tested 

parts had measurable deformations, i.e. the top portion of the part had translated a measurable 

amount from its original symmetric configuration as shown in Figure 33 (left) shows the 

deformations and calculated applied and residual strains for the tested parts. The results are 

consistent with the elastic behavior for specimens G and H, and a combination of elastic and plastic 

behavior for specimens A-F.  
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Figure 41 Residual plastic strain as a function of applied elastic strain. The x-intercept 
represents the onset of plastic strain. 

 

The results are consistent with an elastic strain limit of approximately 2.1% as seen in 

Figure 41. This compares favorably to the elastic limit of 2.2% (𝜀𝜀𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 𝑒𝑒𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒 = 𝑆𝑆𝑦𝑦 𝑎𝑎⁄ ) that would 

be estimated from the flexural data reported by Stratasys (Sflex = 41 MPa, Eflex = 1,834 MPa) [100]. 

 

4.7 Discussion 

The modulus of bulk raw material is generally known, but the effective modulus of the 

printed structure can deviate significantly due to voids, under-filling, over-filling in the structure, 

anisotropy in the deposited material and other miscellaneous variations [87].  

The yield strength (Sy) can also vary with the printing process due to the effects of 

temperature on the material and the bonding between features. There is also uncertainty in the 

actual value of c due to the tolerances of the manufacturing process. These differences will affect 

both the vibration frequency and the plastic deformation. Since these effects are not easily isolated, 
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it may be difficult to isolate the cause of a change. However, the measurements can be used to 

monitor for process changes that affect the density, finished dimensions, feature bonding, and 

material properties. 

As each component is created by AM processes, the orientation or position of the part can 

vary the amount of void space or dimensional inaccuracies within a part. The vibrational analysis 

yields natural frequencies that vary little between tests of the same part but have a larger variation 

between individual parts with similar geometries. This would imply that the measuring system is 

repeatable, but each identical component produced from AM has varying degrees of inaccuracies. 

By simply measuring the weight of a component, a rough estimate of the degree of inaccuracies 

can be found. However this does not take into account how this would affect the mechanical 

properties of the component, namely elastic modulus. By using the equations found in the theory 

section we can then extract the estimated modulus values. 

During the initial deformation of the test samples, audible pops were often observed for 

the small cam radii. Inspection of the specimens frequently showed delamination of the beams in 

these cases. Thus, these thin beams appear to be failing in shear rather than tension. This would be 

surprising for an isotropic material as the shear stress should be small under the expected load 

condition. This may indicate that the loading does not fully reach the idealized full bending 

condition. However, there is a concentration of shear as the beam transitions between the 

curvatures of the two cams. Additionally, the bonding between adjacent deposition lines is known 

to be weaker than the native polymer. This is especially possible in thin beams made without fill 

in which the software that defines the AM machine's route may be prioritizing accuracy of external 

dimensions over mechanical strength. 
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While the vibrations were measured using an oscilloscope in this work, the speaker output 

could be read by more commonly available computer inputs such as a microphone jack on a 

cellular phone or laptop. We have also demonstrated that we can detect the vibrations using the 

accelerometers built into many tablets and smart phones. Thus, these methods could be adapted to 

the use by DIY testers with minimal expense. They could also be integrated as test coupons in 

production manufacturing without the need to use expensive testing machines for routine process 

monitoring. However, to be useful in process monitoring, the test method needs to be highly 

reliable. While these results were promising, more evaluation is necessary to assess whether the 

method is sufficiently accurate to use in these applications. While the variation in the 

measurements was significant in the initial tests, it is unclear whether this is due to variation in the 

test methods or the parts being tested. 

 

4.8 Conclusion 

A simple test geometry has been presented that facilitates assessments of strain limits of 

the material and the elastic modulus. This method utilizes flexible elements and a circular cam to 

apply a uniform strain across the flexible elements utilizing simple hand loading. A series of 

different sized elements can be used to identify the elastic strain limit of the printed structures. 

Additionally, the natural frequency of the structure provides an estimate of the structure’s elastic 

modulus. The required equipment is readily available to DIY users. The method could also be 

useful for monitoring the stability of production processes. 

A series of components have been manufactured using thermal extrusion and the test 

methods were applied to them. When applied to a series of parts with different bend radii, the 
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measured results provided an estimate of the elastic strain limit of the material. The elastic modulus 

estimates showed consistent predictions for components produced on the same machine even when 

the key geometric parameter (cam radius) varied. The method also showed an ability to detect the 

effects of a printing parameter on the effective modulus of elasticity of the printed structure. These 

results show that the outcomes, particularly the frequency, are sensitive to variations between 

parts. Further work is needed to identify the sensitivity of these measurements to other sources of 

process variation. 

  

 
This article is © Emerald Group Publishing and permission has been granted for this version to appear in the 

University of South Florida Repository. Emerald does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited. 

 
67 

 



www.manaraa.com

 

 
 
 
 
 

CHAPTER 5: CONCLUSION 
 

The overarching themes of my research have been compliant mechanisms and origami 

engineering. Two of the projects that comprise my dissertation (Chapters 2 and 3) involve using 

novel pieces of origami to make previously designed mechanisms waterproof. By creating pieces 

of origami whose kinematics mimic that of the underlying mechanism, the origami can be used as 

a waterproof membrane to prevent fluid flow through the mechanism during actuation of the 

mechanism. An example of how this could be used in application is that the second mechanism 

for which this concept was applied (the cylinder which deforms to a hyperboloid), could be used 

as a pipe. Given the shape-changing abilities of the mechanism, the pipe would be able to change 

cross section, which could be beneficial for curtailing or increasing fluid flow into an engine or 

pump. I created the origami membranes that they sought to create. I created an origami fold pattern 

which can fold into any of the positions that the shape-shifting surface is able to take on. This 

project also resulted in designs which reduced the internal stresses of the part during operation by 

more than 22%. In the second project [3], I created an origami fold pattern which can fold to either 

of the states that the SMSF can take on. In this work, I designed a membrane which could reduce 

the side length of the underlying mechanism by more than 30%.  

In the third project [83] that was included in my dissertation, I developed a method for 

testing rapid prototyped materials after they have been processed through a rapid prototyper. When 

a material is processed through an FDM machine, it undergoes a thermodynamic process and a 

physical change in the structure of the material. These two events can cause a change in material 

properties. For this reason it is necessary to test the material properties after processing in order to 
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know how the material is going to behave in operation. The part developed in this project allows 

the material to be tested after processing without the need for expensive testing equipment such as 

a tensile tester. 

My contributions in Chapter 2 are: 

• A novel design for an origami membrane whose kinematics when folded, mimic that of the 

shape-shifting surface [66].  

• The optimization for the shape-shifting surface.  

My contributions in Chapter 3 are:  

• A method for synthesizing a novel origami fold pattern whose kinematics mimic that of 

another mechanism.  

• The fold pattern for the origami to mimic the kinematics of the shape-morphing space 

frame.  

My contributions in Chapter 4 are:  

• The design of the test part and its FEA simulations.  

Future work for Chapters 2 and 3 would involve developing methods for sensing and 

actuation of the parts with the origami mounted to it, as well as developing an integrated prototype 

that would consist of the mechanism and the origami being fabricated as one. It would also include 

developing methods for automating the folding of the origami, as well as exploring the possible 

advantages of simplifying the mechanisms themselves (i.e. reducing the number of components). 

Future work also includes, identifying the optimal material to be used for the origami membrane. 

For Chapter 4, future work could include further studying residual strain and the fatigue 

implications thereof, as well as seeking to develop a method for identifying the elastic modulus of 

the material with a cheaper means than an osciliscope. 
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APPENDIX B: MATLAB CODE 
 

The code outlined in appendix B is MATLAB code which ran two nested optimization 

routines, the purpose and details of which are described in Chapter 2. 

 

B.1 Script That Calls The Outer Optimization 

This code calls the outer optimization and defines the parameters of it. 

%This script calls the optimization function along with all of its child 
%functions 
clc 
%BEFORE RUNNING THE OPTIMIZATION MAKE SURE TO DELETE/MOVE/OR RENAME THE 
%EXISTING FILES WHICH RECORD THE VARIABLE VALUES SO THAT THE NEW VALUES DO 
%NOT MIX WITH THE OLD VALUES 
  
%Utilizing the profile function will help to make the program run faster 
%Starting point values for the optimization variables 
x0 = [58.58 67.32 77.98 16.55 49.4 46.61 18.27]; 
x1 = [5.0636 6.1438 66.673 45.276 12.97 38.199 38.051]; 
  
%Lower bounds 
lb = [0 0 0 0 0 0 0]; 
  
%Upper bounds 
ub = [76.2 76.2 78 60.78 60.78 60.78 60.78]; 
  
%Used for testing the inneroptimization function 
%in-neroptimization3(x0) 
  
%Used for testing the whole optimization 
%opt12code(x0,lb,ub) 
  
%Specifies the options for the optimization problem 
options = optimoptions('fmincon'); 
options = optimoptions(options,'Display', 'iter-detailed'); 
options = optimoptions(options,'OutputFcn', { @outputfun }); 
options = optimoptions(options,'PlotFcns', {  @optimplotx @optimplotfval 
@optimplotfirstorderopt }); 
options = optimoptions(options,'Algorithm', 'interior-point'); 
  
%Defines the handle for the optimization setup 
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optimproblem = 
createOptimProblem('fmincon','objective',@inneroptimization3,'x0',x0,'lb',lb,
'ub',ub,'nonlcon',@optconstraints,'options',options); 
 
%Uses to search for a global optima 
gs = GlobalSearch; 
run(gs, optimproblem) 
 
%Uses a multistart to search for global optima 
%ms = MultiStart; 
%run(ms, optimproblem, 20) 
  
%Used to check the optimized design variables against the constraints 
%function, the second to last number in the dlmread command is the  
% desvar = dlmread('desvarvalues.txt'); 
% rc = size(desvar); 
% x = desvar(rc(1),:) 
% [C, Ceq] = optconstraints(x) 

 

B.2 The Inner Optimization 

This code uses a gradient based approach to solve the solid mechanis equations that dictate 

the behavior of the part. 

function fyopt = inneroptimization3(x) 
%This function solves the set of equations outlined in optfun and records 
%the results in matrices, the bottom half of the function which is 
%currently commented out checks the validity of the solutions by plotting 
format shortg 
%This is the necessary format for the inputs to this function 
%Format: %x1 x2 x3 y1 y2 y3 y4 
%x0 = [58.58 67.32 77.98 16.55 49.4 46.61 18.27] 
  
%Design variables 
%x's and y's are the final position of the given beam 
%The first number is the coordinate in the CAD drawing, the number in 
%parentheses is the coordinate in the hand drawing, the number after the 
%colon is the variable as MATLAB recognizes it. The number in parentheses 
%is the hand drawing and also the CAD drawing in the optimization folder. 
% y1(x1): x(1) = -58.58;  
% y2(x2): x(2) = -67.32;  
% y3(x3): x(3) = -77.98;  
% x1(y1): x(4) = 16.55; %r1 = 60.88 
% x2(y2): x(5) = 49.4; %r2 = 33.997 
% x3(y3): x(6) = 46.61; %r3 = 11.018 
% x4(y4): x(7) = 18.27; %r4 = 28.57 
% y4(x4): x(8) = -74.4; 
% y5(x5): x(9) = -74.4; 
% x5(y5): x(10) = 0; 
  
%Order gets mixed up here because the inputs from the function must be  
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%x(1-7) so the only ones which I can prescribe are 8 9 and 10  
%x(8) is really x4, x(9) is really x5, x(10) is really y5  
x(8) = 74.4;  
x(9) = 74.4;  
x(10) = 0; %r5 = 18.529 (old value) 
  
theta10 = atan((x(4)/x(1))); 
theta20 = atan((x(5)-x(4))/(x(2)-x(1))); 
theta30 = atan(-(x(6)-x(5))/(x(2)-x(3))); 
theta40 = atan((x(7)-x(6))/(x(8)-x(3)))+pi; 
theta50 = -pi/2; 
t = [theta10 theta20 theta30 theta40 theta50]; 
  
r(1) = ((x(1)^2) + (x(4)^2))^0.5; 
r(2) = (((x(2) - x(1))^2) + ((x(5) - x(4))^2))^0.5; 
r(3) = (((x(3) - x(2))^2) + ((x(6) - x(5))^2))^0.5; 
r(4) = (((x(8) - x(3))^2) + ((x(7) - x(6))^2))^0.5; 
r(5) = (((x(9) - x(8))^2) + ((x(10) - x(7))^2))^0.5;  
fid2 = fopen('lengths','w'); 
fwrite(fid2,r,'double'); 
fclose(fid2); 
  
fid3 = fopen('angles','w'); 
fwrite(fid3,t,'double'); 
fclose(fid3); 
  
%Input variables 
%kk and range can be changed in order to help MATLAB solve the equations 
%more easily, range must go back to its actual value, kk is just the number 
%of steps and consequently the step size 
kk = 10; %Number of iterations 
range = 13.62; %Distance of actuation, original range is 13.62 
  
indk = [0 0 t(2) t(3) t(4)]; %Inputs for the first stage optimization 
solr(kk,5) = zeros; 
FVAL1(kk,5) = zeros; 
EXITFLAG(kk) = zeros; 
  
for k = 1:kk 
    varx = 74.4 - (range * ((1/kk) * (k-1))); %changes the distance which the 
device is currently being actuated 
    %Writes the aforementioned distance into a binary file to be read later 
    %by the optimzation function, opteqns 
    fid = fopen('var','w'); 
    fwrite(fid,varx,'double'); 
    fclose(fid); 
    [sol1,FVAL,EXITFLAG(k)] = 
(fsolve(@opteqns,indk,optimset('MaxFunEvals',2000,'FunValCheck','on','Display
','off'))); 
    %writes the results of the fsolve command into matrices 
    for d = 1:5 
        solr(k,d) = sol1(d); 
        FVAL1(k,d) = FVAL(d); 
    end 
    indk = sol1; 

 
85 

 



www.manaraa.com

 

end 
  
%Commented these out to try to make the program run faster, they are used 
%to convert the angular variables to degrees from radians to make them 
%easier to understand 
%sold(:,3:5) = (solr(:,3:5)*180)/pi; 
%sold(:,1:2) = (solr(:,1:2)); 
fyopt = mean(solr(:,2)) + max(abs(solr(:,2))); 
  
%Everything past this line is used for checking the validity of the prior 
%code 
  
%solr((kk+1),:) = indk; %Checking the initial guess loop 
% EXITFLAG 
% solr 
% sold 
% FVAL1; 
  
%Used to plot function values at each iteration 
%for u = 1:5 
    %plot(FVAL1(:,u)) 
    %pause 
%end 
  
%Verification test 
% r(1) = 60.88; 
% r(2) = 33.997;  
% r(3) = 11.018; 
% r(4) = 28.57;  
% r(5) = 18.529; 
% theta10 = (15.809 * pi) / 180; %0.2759 radians 
% theta20 = (75.093 * pi)/ 180; %1.3106 radians 
% theta30 = (345.331 * pi)/ 180; %6.0272  
% theta40 = (262.802 * pi) /180; %4.5868 
% theta50 = -pi/2; 
%  
% for q = 1:kk; 
%     varx(q) = 74.4 - (13.62 * ((1/kk)*(q-1))); 
%     %This line was at one point being used to check the initial guess loop 
%     %varx(kk+1) = 74.4; 
%     p1 = [0 + 1i*0]; 
%     p2 = p1 + [(r(1)*cos(theta10))+(1i*r(1)*sin(theta10))]; 
%     p3 = p2 + [(r(2)*cos(solr(q,3)))+(1i*r(2)*sin(solr(q,3)))]; 
%     p4 = p3 + [(r(3)*cos(solr(q,4)))+(1i*r(3)*sin(solr(q,4)))]; 
%     p5 = p4 + [(r(4)*cos(solr(q,5)))+(1i*r(4)*sin((solr(q,5))))];    
%     p6 = p5 + [(r(5)*cos(theta50))+(1i*r(5)*sin(theta50))]; 
%     p7 = p6 - [varx(q)+1i*0]; 
%     z = [p1;p2;p3;p4;p5;p6;p7]; 
%     plot(real(z),imag(z)) 
%     hold on 
%     %drawnow 
%     pause 
% end 
end 
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%a = 60.88 
%b = 33.997 
%c = 11.018 
%d = 28.57 
%e = 18.529 
  
%t10 = 15.809 
%t20 = 75.093 
%t30 = 345.331 
%t40 = 262.802 
%t50 = 270 

 

B.3 Optimization Constraints 

This code defines the constraints of the optimization. 

function [C, Ceq] = optconstraints(x) 
  
%Inequality constraints 
%Prevents any point from going outside of 3" 
c1 = x(1) - 74.4; 
c2 = x(2) - 74.4; 
c3 = x(3) - 74.4; 
  
%Shield cannot be larger than unit cell length minus actuation distance 
%this allows the piece to be actuated without pieces sticking out of the 
%actuated unit cell 
%Keeps the center to right side length inside of 3" 
c4 = x(4) - 60.78; 
c5 = x(5) - 60.78; 
c6 = x(6) - 60.78; 
c7 = x(7) - 60.78; 
  
%Keeps x2 in front of x1 
c8 = x(1) - x(2); 
  
%Equality constraints 
%Keeps the top to bottom length at 3" 
%Commented these out because I think it may have been incorrect 
%c9 = x(4) - 74.4; 
%c10 = x(5) - 74.4; 
  
C = [c1; c2; c3; c4; c5; c6; c7; c8]; 
Ceq = []; 
end 

 

B.4 Inner Optimization Equations 

This code defines the solid mechanics equations to be solved. 
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function F = opteqns(ind) 
%Andrew Katz 
%Design optimization for shape shifting water proof surface 
  
fid2 = fopen('lengths','r'); 
r = fread(fid2,'double'); 
fclose(fid2); 
  
fid3 = fopen('angles','r'); 
t = fread(fid3,'double'); 
fclose(fid3); 
  
psi2 = ind(3) - t(2); 
psi3 = (ind(4) - t(3)) - (ind(3) - t(2)); 
psi4 = (ind(5) - t(4)) - (ind(4) - t(3)); 
psi5 = (ind(5) - t(4)); 
k2 = 2000; %have not yet accounted for I or L 
k3 = 2000; 
k4 = 2000; 
k5 = 2000; 
  
%Receives variables from the inneroptimization function 
fid = fopen('var','r'); 
varx = fread(fid,'double'); 
fclose(fid); 
  
F = [r(1)*cos(t(1)) + r(2)*cos(ind(3)) + r(3)*cos(ind(4)) + r(4)*cos(ind(5)) 
+ r(5)*cos(t(5)) - varx;...  
r(1)*sin(t(1)) + r(2)*sin(ind(3)) + r(3)*sin(ind(4)) + r(4)*sin(ind(5)) + 
r(5)*sin(t(5));...  
(1/sin(ind(4) - ind(5))) * ((-k3*psi3*cos(ind(5))/r(3)) + 
(k4*psi4*cos(ind(4))/r(4)) + (k4*psi4*cos(ind(5))/r(3)) + 
(k5*psi5*cos(t(5))/r(4))) - ind(1);...  
(1/(sin(ind(4) - ind(5)))) * ((k3*psi3*cos(t(5) - ind(5))/r(3)) + 
(k4*psi4*cos(t(5) - ind(4))/r(4)) - ((k4*psi4*cos(t(5) - ind(5)))/r(3)) + 
((k5*psi5*cos(t(5) - ind(5)))/r(3))) - ind(2);... 
k2*psi2 + (k3*psi3*(((-r(2)*sin(ind(3) - ind(5)))/(r(3)*sin(ind(4) - 
ind(5))))-1)) + (k4*psi4*((-r(2)*sin(ind(3) - ind(4)))/(r(4)*sin(ind(5) - 
ind(4))))) - (k4*psi4*((r(2)*sin(ind(3) - ind(5)))/(r(3)*sin(ind(4) - 
ind(5))))) + (k5*psi5*((-r(2)*sin(ind(3) - ind(4)))/(r(4)*sin(ind(5) - 
ind(4)))))]; 
end 
  
%ind(1) = Fx 
%ind(2) = Fy 
%ind(3) = theta2 
%ind(4) = theta3 
%ind(5) = theta4 
%E(pp) = 1.5 - 2 GPa 
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B.5 Output Function 

This code records certain design variables to a separate file to be used at various times 

during the execution of the program. 

function stop = outputfun(x, optimValues, state) 
stop = false; 
  
%Recording design variable results using a text file because the binary 
%file is less convenient to read and because it rounds to the nearest 
%integer and the text file rounds to the nearest hundreth 
dlmwrite('desvarvalues.txt',x,'-append'); 
  
%Old code that attempted to save all plots in a multistart, never finished 
%it because I wasn't sure that it was necessary 
%h = gcf; 
%saveas(h,'Plots') 
end 
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APPENDIX C: CAD DRAWINGS FROM CHAPTER 2 

 
 
Figure C.1 These are various designs that were tested in Chapter 2 but were not 
deemed useful 
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Figure C.2 These are various double size designs that were tested in Chapter 2 but were 
not deemed useful 
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APPENDIX D: CAD DRAWINGS FROM CHAPTER 4 
 

 

 
Figure D.1 These are all eight sizes of the part designed for Chapter 4 
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